TITLE Canadore Comprehensive Achievement Monitoring (CAM)
INSTITUTION HOTE

EDRS PRICE
DESCRI PTORS

IDENTIFIERS

Mathematics: an Introduction ε Overview. Canadore Coll., North Bay (Ontario). 124p.; Prepared by Continuing Education Division; Best copy available

> MF- \$0.83 HC-\$6.01 Plus Postage:

Achievement Tests; Cognitive Objectives; Curriculum Development; Curriculum Evaluation; *Educational Objectives; Electronic Data Processing; Elementary School Hathematics; *Elementary Secondary Education; Individualized Curriculum; *Individualized Programs; *Mathematics; Multiple Choice Tests; Post Testing; Pretests; Screening Tests; Secondary School Mathematics; Student Placement; Student Testing; *Test Construction
CAE; *Comprehensive Achievement Monitoring; Learning Individualized for Canadians

ABSTRACT

Three tests were developed in the Canadore Comprehensive Achievement Monitoring (CAM) project in the area of mathematics. The Canadore Can Monitoring Tests were used to obtain an estimate of knowledge of objectives on a preinstruction, postinstruction and retention basis. The Math Survey Tests were used to place a student at the appropriate point within the math curriculum. The Math Block Mastery Tests were developed to allou for a pretest, posttest and interim test within each study block. In order to construct these tests, content topics were identified, then further defined by curriculum level. Since in an individualized program, it is necessary for some sort of objectives to be written so that students can ascertain the immediate goal of their study. Generic Objectives were developed for each content topic at each curriculum level. Each Generic Objective indicates the stimulus, how the information is received by the student, the general operation and the conponent operated on, and the out put expected from the student. Five test items were written for each of the Generic objectives. For each kind of test, itens were randomly selected to cover the appropriate Generic Objectives. (BH)

**

* Documents acquired by ERIC include many informal unpublished * * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC nakes available * via the ERIC Document Reproduction Service (EDRS) . EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made fron the original. ***

CANADORE COMPREHENSIVE ACHIEVEMENT MONITORING (CAM) MATHEMATICS: AN INTRODUCTION \& OVERVIEW

Learner at the Centre:
A Project in the Management of Instruction

1

U.S. DEPA胃TMENT OF NEALT
EDUCATION \& WELFARE EOUCATIONAWITUTEDF MATIONAL INSTITN
EDUCATION

AENT HAS BEEN REPRO THIS DOCUMENT HAS BEEN REPRO. DUCEO EXACTLY ORGANIZATION ORIGIN THE PERSON OR ORGANIEW OR OPINIONS ITING IT POIMTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY RITUTE DF SENT OFFICIAL NATIONAL INSTITY

Project Director

Paul J. Dudgeon
Dean, Continuing Education
Canadore College
Continuing Education Division
North.Bay, Ontario, Canada
Project Staff
John Brock, Chairman Continuing Education

Andres•Jiminez, Educational Development Officer
W. L. Roger Crane, Educational Development Officer

Gordon Richardson, Educational Development Officer
Curriculum AREA 2
Content Topics 3
Curriculum Levels 3
Topics By Curriculum-Levels-Matrix 5
Subdivision of Topics Into Strata 6
Utilizing Published Objectives 7
Generic Objectives 8
Constructing the Generic Objective 10 10
Sequencing Objectives Between Curriculum Levels 12
Sequencing Objectives Within Curriculum Levels 14
Selecting Test Item Format 16
Constructing Test Items 18
Selecting Test Types 21
Constructing all CAM Tests 23
Canadore CAM Monitoring Tests 23
Canadore CAM: Math Survey Tests 26 26
Canadore CAM: Math Block Mastery Tests 26
CAM Computer Program 28
Preparing Computer Irput 29
Canadore CAM Reports 29
Administrating Canadore CAM: Math Monitoring Tests 30
Student Management Folders 30
Implementation of Canadore CAM: Math Block Mastery Section 32
APPENDICES
Content Topics by Curriculum-Ievels-Matrix D-1
Content Outline of Canadore CAM: Math D-2
Explanation of Generic Objectives D-3
Generic-Obfective Card D-4
Selefted Samples of Generic Objectives D-5
Number of Generic Objectives in Content Tppics By Curriculum Levels Matrix D-6
Abbreviations Administrative Outline of Generic Objectives. D-7 D-8
Test Item Card
Test Item Card
Spacing Guide for Typing Items on Cards D-9
Selected Samples of Test Items D-10 D-10
Sample Canadore CAM Reports D-11
Student Management Folders and Examples D-12 D-12

CURRICULUM AREA

For the purposes of the project it was decided that attention would be placed on mathematics as the subject area for this initial portion of the Canadore CAM System. Only a single curriculum area was chosen so as to concentrate developmental tasks in one direction.

It is obvious that mathematics is a vital and basic skill area for many occupational trades. Because of the strong hierarchical and sequential nature of the discipline, the obtaining of accurate data on student learning outcomes and retention is vital both for the student and the program. The CAM Model, as explained in the ensuing pages, is ideally suited to the task. There were four possible curriculum areas that could have been chosen: communications, science, mathematics and reading. The science and communication areas were allocated to another part of the project. - cognitive style mapping. It would have been unwise to further confound that investigation by incorporating a new curricular organization and management system.

Further, a CAM System in reading for students in a grouppaced setting has been developed in New York State. It was thought to be more beneficial to embark on a different curricular discipline than just to revise a CAM Model for reading so as to fit into an individualized setting.

CONTENT TOPICS

After deciding on the curricular area, the general topics to be utilized were determined. The LINC Mathematics Program, in use at the time, in the BTSD Program at Canadore was consulted as were other materials (such as text books and course outlines). that are usually employed by the mathematics instructors.

After these series of analyses were accomplished, it was decided to form 19 topic areas. They were to be tentative and subject to change as conditions altered. The content topics enumerated were:

| Whole Numbers | Trigonometry |
| :--- | :--- | :--- |
| Fractions | Algebra |
| Decimals | Indices |
| Percent | Graphs and Statistics |
| Measurement | Slide Rule |
| Sets | Logs |
| Geometry | Series and Progressions |
| Integers | Permulations and Combinations |
| Ratio and Proportion | Consumer Mathematics |
| | Metric System |

These topics included every unit that is usually taught to the students from the lowest grade to the highest (i.e. grades one through twelve). The topic outline was designed to be complete for the entire BTSD mathematics curriculum.

CURRICULUM LEVELS

In the BTSD Program, students enter with varying achievement levels in mathematics and indeed, in all content areas. A
student might enter with, in effect, no knowledge and/or training in arithmetic (at the Kindergarten ormade " 0 " level) or with most mathematics skills learned except for a selected few (i.e. use of a slide rule). As a result, it was decided to include all grade levels from K to 12 for the final version of the Canadore CAM-Math System.

However, it was preferred that these grade levels (13 in all) be grouped together to make a more manageable number of curriculum levels. Of course, these grades could be grouped in any number of different combinations to make as many or as few levels as desired.

After discussions, it was determined that the lower grades of the traditional school system (i.e. K-8) could be more conveniently grouped than the traditional high school levels since much of the material is usually reinforced from grade to grade at these earliest levels. Also, the topics are more consistent from grade to grade in $\mathrm{K}-8$ than $9-12$ where many new topics are actually initiated and then concentratedly reinforced.

Curriculum levels for the Canadore CAM System-Mathematics are as follows:

Curriculum Leve1s		Grade Levels
I		K-3
II	$4-6$	
III	$7-8$	
IV	9	
V	10	
VI	11	
VII	6	12

TOPICS BY CURRICULUM-LEVELS-MATRIX

The two aspects-content topics and curriculum levels-were combined into a matrix of 7 columns by 19 rows that consisted of 133 cells. As a result, there were 133 decisions to be made as each cell represented a given content topic in a specific curriculum level. In effect, for each cell, a decision had to be made as to whether at least a portion of the specific content topic ought to be taught in the given curriculum level.

A two-level format was developed to be used to indicate teaching within a cell. A solid line (\longrightarrow) in a cell was used to indicate that this topic was taught with emphasis at this level. A broken line (----) was used to indicate that some attention was given the topic but only briefly or in an introductory or peripheral manner. It was further determined that the teaching with emphasis for a topic would occur in contiguous cells (horizontally) if it occurred at more than one curriculum level. Information from various inputs was used in order to classify each cell.: The experience of the mathematics instructional staff in combination with current mathematics material (i.e. LINC) were relied on most specifically in this classifatory procedure.

The resulting completed matrix is given in Appendix D-1. In this matrix, for example, it can be seen that the topic of "whole numbers" is taught primarily in curriculum level I and II with peripheral attention given in the third and fourth levels. Decimals, on the other hand, is taught peripherally in levels. I and II, with concentration in level III and reinforcement in levels IV and V.

This matrix has become the curriculum basis for the Canadore CAM-Math System. The subsequent organizational structure will always be able to trace its roots back to this matrix.

SUBDIVISION OF TOPICS INTO STRATA

Once the basic 19 general topic areas had been determined, it was necessary to subdivide them into smaller units. A three-tier approach in this breakdown of the content topics was developed. That is, there would be a general topic subdivided into subtopics and, if necessary, further broken down into subsubtopics. It was also realized that in some circumstances two levels would be sufficient and this was to be acceptable.

Inputs were obtained from numerous sources in order to achieve this subdivision. Again, content outlines, current texts, Humber's RANDA Program and our existing mathematics programs were all employed. This data was further refined by utilizing the experience of the instructional faculty at Canadore. Originally, a rough division into subtopics was achieved. A subtopic was to be included if it was found in a content outline and if in the instructional staff's opinion it ought to be taught to students in this program once they had attained the appropriate prior learning experiences.
Once this original subdivision had been accomplished, an additional sub-level was obtained by subdividing the secondtier topics. Again, the same sort of analysis was used as for the original breakdown. However, this time, much more attention was placed on whether specific content areas should be
taught to students in a BTSD Program. The assumption here was that only the content areas that ought to be taught should be included in the outline, at least in the pre1iminary version.

This "Revised Draft" of the content outline is listed in Appendix D-2. It is not designed to be a final format. The whole concept in our system's design is that formative evaluation will be utilized to the utmost. It is hoped. that continuous feedback of all types will allow constant upgrading of the topic outline as well as all other portions of the Canadore CAM-Math System.

UTILIZING PUBLISHED OBJECTIVES

Math objectives have been written for numerous courses, books and instructional systems. There are a wide variety available from numerous sources. In fact, some published objectives are very comprehensive and, in a general way, applicable in any BTSD Program.

It was decided to obtain a reference file of mathematics objectives from selected sources. This file was firstly to be used as an idea generator in as far as writing objectives was concerned. However, even more important was its use as a check to ensure that important, perhaps intermediary, objectives were not excluded.
Objectives from four sources were deemed relevant enough to be included in this reference file. Most directly applicable were those that were at that time in use at Canadore-those of the LINC (Learning Individualized for Canadians) Program.

This was thought to be a good base on which to build the reference file. In addition, the forebearer of LINC, the NewStart objectives, were thought to be a useful supplement. Although they overlapped considerably, together they represented most content subtopics.

An additional group of mathematics objectives were obtained from Project SPPED-System for Pupil and Program Evaluation and Development. This group of objectives, covering grades K through 9, was organized by level and topic and grouped into a "bank" (or collection) of objectives. In addition the packages prepared by Humber's RANDA Division were useful. Every stated objective of these three programs was cut-out from the original document and pasted onto a 5 by 8 inch index file card. Then each card was sorted, based on the previously obtained strata of objectives. The result was well over one thousand objectives sorted by topics and subtopics.

Of course there were very many cases in which virtually identical objectives were obtained in the same subtopic area. In addition, nearly all of the objectives were far too specific to suit the purpose of the Canadore CAM-Math System. Nevertheless, these did help greatly in forming the genesis of our objectives.

GENERIC OBJECTIVES

The basic element in the CAM System is the "generic objective" (GO). It was found that many of the objectives developed by others were far too specific, or even too
general for this curriculum development. Partially in order to lessen the instructor's load in the preparation of these objectives, it was thought that objectives could be written that neglected specific content in favor of an overall objective. This could be made more specific later when the GO and specific content were mapped together to produce content objectives.
A defined form of the generic objective was developed. A specific format was utilized in order to ease the problems of writing the objectives and, more importantly; applying them in practice.
Our generic form of objectives can be broken into an input and an output string. An example of a possible mathematics generic objective is:

the student | 3 |
| :--- |
| writes the whole |

Output String

The input string indentifies the general type of stimulus or stimuli. (1) and the general mode of input (2) in the math objectives. The usual mode of stimulus is visual - the student reads what he is given. So common is this that it was decided to state that the mode of input (2) will only be listed where it is not written or visual. Every other mode was to be an exception and therefore to be specifically stated, as in the above example.

The output string consists of the general operation or behavioral indicator or verb (3), the thing operated on or component (4) and any necessary modifiers (5). The behavioral indicator (3) is the action verb that indicates what the student is to do - write, solve, calculate and so on. A modifier (5) is only utilized when it is considered necessary to further describe the component.
From the explanation and example given, il is clear that this particular form of objective initially disregards specific content (for further explanation, see Appendix D-3). In this system, specific content is employed only when allocating Generic Objectives to horizontal sequences of cells in the Content Topics by Curriculum-Levels-Matrix.

CONSTRUCTING THE GENERIC OBJECTIVES

The basis for constructing the generic objectives was the strata of objectives that analyzed the 19 topics into a three tier system. As this had been constructed with considerable care, the writing of the generic objectives was made less onerous than would have been the case without this detailed outline.
Every Generic Objective was written in the format indicated above: "Given, the student"

As each Generic Objective was written, it was independently checked as to the validity of the content and the general clarity of the objective itself. It then went back to the initiator of the generic objective for his re-assessment. At that point, the generic objective (written on a printed card) was preliminarily approved and given a temporary generic
objective content number that consisted of eight digits and corresponded to the six digit code developed for the strata of objectives plus two digits for the objective number. Then the objective was sent to be typed in the appropriate places on a previously designed draft version of a Generic Objective card (for further explanation, see Appendix D-4). The objective, objective number and classification were typed on the card. The procedure then called for the initiator and an instructor to approve the objective to their satisfaction. The objective was then sent to the Evaluator for final analysis. It was his duty to approve the overall content and style of the objective. More importantiy, he utilized the previousiy developed objective Reference File for comparative analysis. Care was taken to prevent important objectives from not being included in the Canadore CAM-Math System.
This procedure was followed for every generic objective so that, eventually, a paper-based data bank of generic objectives was obtained. A Iist of some of our generic objectives is given in Appendix D-5. However, it must be kept in mind that this is not a static collection. Any individual Generic Objective may be altered if necessary. In addition, entirely new objectives or groups of objectives č7 be initiated if later feedback and analysis indicates the advisability of this action.
Generic objectives were written for ali the content topics of relevance to the $\mathrm{K}-10$ grades: Levels 1 to 5. It had been decided a priori to confinc the original course domain to the
first five levels. Correspondingly Generic Objectives were written for only those sub-topics in levels 1-5 as indicated in the content topics by curriculum levels matrix.

SEQUENCING OBJECTIVES BETVEEN CURRICULUM LEVELS

When all the necessary Generic Objectives had been written and passed final approval, it was necessary to assign each objective to a specific level or levels. The process started with a look at the objectives in the whole number classification. Each objective was reviewed as to which level it should be in, taking into account the matrix as illustrated in Appendix D-1. When it was determined at which approximate level the objective belonged, it. was time for a different evaluation.
Each objective was reviewed as to the utility or necessity of teaching it at two or more levels. The general approach was to consider if the objective was important enough to be introduced at one level and then re-taught at a higher level. There were two classifications for re-teaching: "re-cycle" where the objective was re-taught at a higher level of difficulty and "review" where the objective was re-taught at the same level of difficulty as the previous level.
Generally "level of difficulty" was synonymous with different content parameters. Where one level of difficulty might be adding one and two digit numbers, the next higher level might deal with three or more digit numbers. In virtually all cases where an objective was introduced in one level and re-cycled in another level, the difference was in the specific' content parameters on the Generic Objectives. These content
parameters further defined the item-form type of objective we were writing.

In the case where an objective was introduced and then reviewed at a later level, the content parameters were identical, often not being mentioned, at least in as great a detail as in the previous case.

Accordingly, all objectives were reviewed as to the following:

1) Choose "introduction" level.
2) Decide if phasing to be done in two or more levels.
3) Decide whether post-introduction levels to be described as "re-cycile" or "review".
4) Decide level of difficulty parameter if more than one level and objective is re-cycled.

These decisions were made and reviewed several times before the final Levelling phases were determined. The final approval and arrangement was determined by the CAM Evaluator. As a result of these analyses, some 1004 Generic Objectives were developed, some of which were in two or more Curriculum levels at one or more levels of difficulty. The distribution of the Generic objectives in the content topic by curriculum levels matrix was as is shown in Appendix D-6. Note that the total number of objectives is at a maximum in Levels II and III and at a minimum in Level I where greater attention is paid to fewer numbers of objectives.

SEQUENCING OBJECTIVES WITHIN CURRICULUM LEVELS

Now that the objectives that were to be included in each level were chosen, it was necessary to order the objectives within each level into an instructional sequence. That is one had to decide what objective was to be taught first, second, third...in each level. In what order was the typical student to receive instruction on objectives. It was decided to utilize a block organization for our curriculum. Each level was to consist of Blocks of instruction. Each Block was to a priori be defined as a section of content taking the average student about 20 hours to learn. As our program is individualized, the determination of 20 hours worth of instruction was difficult. However, as long as there was the tendency to make each block roughly equal in length of time taken to learn the material, this was satisfactory. There were to be no more than 19 blocks of instruction in each level. . For our five levels, the following illustrates the numerical schema.

Leve1	Allowable Blocks
1	$01-19$
2	$20-39$
3	$40-59$
4	$60-79$
5	$80-99$

Within each block were units and within each unit were modules or objectives. The make-up of each unit was formed on the basis of homogenous content. There were to be no more than 9 units in a block and no more than 9 modules in a unit - forming a maximum of 81 allowable modules per block.

For each level, the first step was to roughly ordex the topic areas to be covered in a level according to logical instructional sequence. After this rough ordering, specific Generic Objectives were put into order. This order was checked at least twice with final approval being given by the CAM Evaluator.

After the instructional sequence was determined on the basis of Generic Objectives, it was time to put the objectives into the administrative schema. The objectives were first grouped into units of instruction, the main consideration being homogeneity of content and the stipulation that the maximum number of objectives per unit would be 9 with the mean to be considerably less than that-hopefully around 5 or 6 modules per objective. This requirement was needed to keep the units reasonably short and to allow for additional objectives in a unit if this became desirable in a later curriculum revision.

During formulation of these units, there were some alterations and revisions to the sequence of instruction previously chosen. This came about for pedagogical and administrative reasons. However, these changes, especially for the latter reason, were kept to an absolute minimum. Once the units for each block were determined and were in the recommended sequence, the units were grouped into blocks. Each block was to contain the above mentioned 20 hours of instruction for the average student as well as being restricted to 9 units or less. This process was followed for all five levels. As a result, the following indicates the actual block numbers in each level:

Curriculum Level	
1	Blocks
2	$01-07$
3	$20-33$
4	$40-55$
5	$60-71$
	$80-88$

The administrative numbering structure differed from that of the content classification scheme, there being 4 digits in the administration number. The meaning of the digits is explained below:

The scheme was restricted to 4 digits because of the CAM computer program that was to be utilized. However, the Block number indicated which level it was in because of the nonrepetitive block numbering sequence.

At this point, there existed the entire administrative structure with all objectives grouped and in the desired instructional sequence. In abbreviated form, the outline of the Generic Objectives by Level, block and unit is given in Appendix D-7.

Now the attention needed to be turned to assessment.

SELECTING TEST ITEM FORMAT

The objectives were written in Generic format, for one reason because it is an item-form type of objective. That is to say, it explicitly states the information to be given the student in assessing his knowledge as well as indicating the desired
output he should produce. Our objectives are much more explicit in regards to parameters such as these than most other objectives.

In addition, it was known that we would utilize the CAM computer program to analyze performance. This program allows for direct input of student responses to a test. The most efficient means is to have objective type items (True-False, Matching, Multiple Choice). The use of these types of test items eliminates the need for direct involvement by any teacher or clerical aid. Also, since we are dealing with a mastery situation it was thought extremely unlikely that a person could obtain 80% or so just by guessing. Furthermore, multiple-choice test items are recognized for their sensitiveness as test questions. Minor fluctuations in knowledge can be detected by these types of tests, a change more difficult to assess and quantify in short-answer (recall) or essay tests. Finally, if the distractors are constructed and chosen with care, there exists a powerful diagnostic device capable of informing the intelligent evaluator and instructor about the types of mistakes being made by a student and the specific instruction he should receive. It is the ideal beginning of a truly effective CMI system. Correspondingly, it was decided to employ multiple choice questions for virtually all objectives (there were a very few exceptions). It was additionally determined to make five response options available to the student. . This number was chosen for a variety of reasons: maximum
number of options permitted by CAM, lowest chance score and on the average more diagnostic possibilities. Of the five options, the fifth was virtually always to be of the "correct answer not given" or "none of these is correct" sort. Having this non-numerical option in a content area that is usually either of the right or wrong answer variety would hopefully tend to reduce chance scores somewhat. In any event, it was decided to make this fifth option the correct answer on 20% of the population of test items. Indeed it was determined that each objective was to have 5 test items written for it. These 5 test items for an objective would have the correct answer $1,2,3,4$ and 5. Thus in the population of test items for an objective, or for groups of objectives, the distribution of correct answers would follow a rectangular distribution (all answers equally likely). On a sample of test items, there would exist a tendency to form a rectangular distribution, deviating from the true distribution being due to random fluctuations due to sampling.

CONSTRUCTING TEST ITEMS

Once the test item parameters were determined, the test items needed to be written. The goal was to write five test items for each of the 1,000 plus objectives - a total of over 5,000 test items. The task was very awesome but possible - but with much effort! Because the objectives were written in Generic format, the job was made very much
easier. In general, the objective was very specific as to the required elements of the test item.

Item writers were selected to write the test items under the direction and control of the CAM Evaluator. Very specific instructions were given to each test item writer. Initially, the CAM Evaluator wrote what were termed "proto-type test items". This consisted, in fact, of one sample test item for each objective. The test item writers. then were to follow the format, in general just changing the specific content numbers and such like.

The test item writers then wrote the remaining four test items for the objectives that had proto-type items written. The CAM Evaluator then very carefully checked the test items for specificity, correct answer, desirability of distractors and so on. Those not passing scrutiny were passed back to the item writer for revision. The CAM Evaluator had final approval on all test items.

As the item writers becane more experienced, they wrote proto-type test items for those objectives not having this sample item completed. Every proto-type was thoroughly checked and revisions made as needed. It was only after the proto-types were written and approved that the remaining four test items were constructed.

Even after all the test items had been constructed, the CAM Evaluator and others reviewed the test items to ensure face validity and accuracy of the test items.

It had been decided to type all test items on $5^{\prime \prime} \times 8^{\prime \prime}$ cards. After much deliberation, the final design chosen was as is
illustrated in Appendix $\mathrm{D}-8$. The upper half is the front of the card and the lower half is the back of the card. The card itself was priñted on yellow stock.

The test items were typed onto the card, following a very rigid spacing guide (See Appendix D-9). It was necessary to ensure all test items were typed following this guide because of the method of constructing tests to be employed.
Sample test items are shown in Appendix D-10. Notice that there are three formats for displaying the five options. The decision as to the specific arrangement to use for any one test item depended on the length of the longest response option. The goal was always to reduce vertical length without sacrificing clarity of the response options. All 5,000 plus test items were typed on the test item card, front and back, each objective having 5 items written for it. As previously indicated, for any objective the correct responses were $1,2,3,4$ and 5 respectively for the five test items.
The test items were numbered using the four digit administrative code plus 2 digits for the test item. All test items were given numbers from 01 to 05 to correspond with the correct response of the test item. One can notice from the samples, that the single digit preceeding the block number indicates the level. Although, strictly speaking, this number is redundant and cannot be used in the CAM computer program (for space reasons) it is useful when looking at the test items (and Generic Objective) cards.

Each of the test items was checked again after typing to ascertain any typographical errors that might exist. In that.way, virtually all of these typing errors were corrected. As a last check at this stage, a check was made to ensure that the correct answer indicated was, in fact, the correct answer and that there was only one correct answer among the five options. Finally, a review was made by the CAM Evaluator to check on any anomalies that might exist. At this point, it is generally the procedure to "try-out" the test items on a sample of students to pick up any "bugs" that might exist as well as to obtain a rough estimate of the efficiency of the distractors. For some selected test items this normal procedure was followed. However, the ratio of number of test items to students was so large and the students spread so thinly throughout the levels that this normal procedure was discarded as impractical. Nevertheless, as many checks and reviews as possible were made (taking into account the limited funds available).

SELECTING TEST TYPES

During the process of selecting the test item types, a parallel procedure was being pursued. The entire evaluation scheme was in the process of being established. After much discussion and thought, it was finally decided to employ a system utilizing three types of tests. The first test-type to be developed was to be called Canadore CAM: Math Monitoring Tests. These series of tests were to be designed to monitor pre-instruction, post-
instruction and retention knowledge on a large group of objectives. The prime purpose of these tests was to serve as a method of obtaining extremely useful data (especially pre-instruction and retention) for the purposes of curriculum analysis and revision. However, they were also to serve as a review of objectives previously studied on the part of students.

The second set of tests to be developed was the Canadore CAM: Math Survey Tests. These series of tests were to be administered to an incoming student. Any student was to take this series only once - when he entered. Essentially they were to be designed to approximately place the student in the curriculum. Assuming some knowledge of mathematics, at what point in the curriculum should the student start? At what block should he commence his instruction?

The last in the series of tests was the Canadore CAM: Math Block Mastery Tests. These tests were to be designed to assess mastery of the set of objectives in a block. A test would be given upon entry to a block to ascertain what objectives, if any, the student needed to study-those on which he apparently lacked adequate knowledge.

After instruction, the student would be given an equivalent form of the mastery test for that block to determine his mastery of the objectives. To pass out of the black, he needed to obtain 80% correct on a block mastery test.

It was decided that no test would exceed 30 test items in length, with the desirable maximum being about 25. No test was to be so long as to increase normal student fatigue to an undesirable level.

The tests were to be answered on separate answer sheets. Two types of answer sheets were to be available: mark sense cards and 3 M test score sheets. The final destination of the student's answer to a test was to be the computer. Correspondingly, the mark sense cards needed to be read and Hollerith codes punched. The 3 M sheets needed to be keypunched.

The tests were to be constructed by selecting the test item numbers to be used in a test. Then, the item cards were pulled out of the paper-based data bank. The cards then were put in the required order and placed in acetate folders. Required headings, instructions, test item numbers, etc. were also placed in the appropriate places in the acetate folder. These folders then were transformed into offset masters and lastly, the test sheets were reproduced and sheets collated to form a test form.

As can be seen, no typing of test items was to be required, a saving in time and accuracy of the reproduction of the test items.

CANADORE CAM MONITORING TESTS
The first set of tests to be constructed were the Canadore CAM Monitoring Tests. The purpose of these tests was to obtain an estimate of knowledge of objectives on a pre-
instruction, post-instruction and retention basis.
It was decided to develop a series of Monitoring Tests for each level. The student was to be given a Monitoring Test in the level in which he was currently studying. After much deliberation, a maximum of about 50 Generic Objectives in each level were selected and designated "Monitoring" Objectives. These were objectives thought to be so important, for whatever reason, that it was advisable that close "tabs" be kept on students' performance on these specific objectives.

The decision on "about 50" as a maximum was mainly based on practical considerations. It was obvious that, considering the size of our student body, we could not monitor all objectives. Thus a subset had to be chosen from each level. As each test form had an a priori maximum of 25 test items, 50 objectives meant that there would be two completely different sets of objectives in each level. In order to obtain reliable data rather quickly, this was thought to be a practical upper limit to the number of sets of monitoring objectives in a level.
After a rather exhaustive review, the following indicates the number of generic objectives chosen to be monitoring objectives in each level:

	$\frac{\text { Number of }}{}$		
	Monitoring Objectives	$\frac{\text { Total }}{}$	
	20	71	
2	51	301	
3	53	300	

Level		
4	Monitoring Objectives $\frac{\text { Number of }}{\text { Total }}$	Objectives
5	48	185
5	38	147

After the Monitoring Objectives had been selected, it was necessary to obtain two sets of the objectives to form the basis for the two sets of test forms in each level. The sampling of the objectives (into set 1 or set 2) was on a rather deliberate basis. The attempt was to ensure that each block was about equally represented in each set. Levels 1,4 and 5 had 10,24 and 19 objectives in each set while Level 2 had 26 and 25 and Level 3 had 27 and 26 objectives in each set.
For both sets of objectives in each level, five test forms were constructed. The test items for each objective were randomly assigned to the five equivalent test forms of the set. When all test items had been assigned, the order of the administration of test items on a particular test form was randomly determined.
Correspondingly, although the selection of the Monitoring objectives and the breakdown of these into two sets in each level was deliberate, the assignment of test items to test forms for all objectives and the ordering of assigned test items in each test form was randomly determined. After all the test forms were formulated on paper, the actual test forms were constructed following the procedure

CANADORE CAM: MATH SURVEY TESTS

When a student enters the program it is necessary to place him at a specific point in the Math Curriculum. To that end, the survey tests were developed.

As a starting point, the two sets of objectives in the Monitoring Tests were collated and a level survey test constructed on the basis of all Monitoring Objectives. There were five forms of each survey test (5 test forms per level). The test items and arrangements of test items in the test form were randomly chosen. In the program, an entering student would take the survey test considered appropriate for a student with his background. If he reached 80% criteria on the survey test, he then would take a survey test in the next higher level. He would take survey tests until his performance fell below 80\%. At that point, he would take a Block Mastery Test in the first block of that level to see if he needed any instruction in that particular block (see below).

Correspondingly, the survey tests were to be used as rough screening device to ascertain at which level a student should commence instruction.

CANADORE CAM: MATH BLOCK MASTERY TESTS

In our individualized approach, students are in a mastery learning situation. Correspondingly, Block Mastëry tests needed to be constructed for each block of instruction.
posttest and interim test while studying in the block. At a later time, when more test items were written, additional Block Mastery Tests would be constructed for each block.

The specific number of test items chosen per pbjective depended on the number of objectives in the block, taking into account the desired maximum of 25 test items per test form. In all but the largest blocks, at least one test item was randomly selected for each objective. In these extrâng blocks (in terms of objectives) not all objectives were tested in at least two of the three test forms in the block.
The specific test items selected for a particular test form werc randomly chosen. In addition, the arrangement of test items on any one test form was also random. Thus on any set of test forms in a block, the test items were randomly selected and no test forin had the same pattern or order of the objectives. No test item was selected for two forms unless, because of ${ }^{c}$ the test selection rules for that block, it was necessary (for example, if two test items needed to be selected for each objective in a block, one test item was repeated, but never on the same test form). In this way, every block had three (seemingly) equivalent block mastery tests - making a total of 174 of these tests, three for each of the existing 58 blocks.

CAM COMPUTER PROGRAM

The Comprehensive Achievement Monitoring system computer program (CAM3) was selected to be the vehicle to record and analyze the student achievement data. This program was selcted after much deliberation and anasynthesis. As the computer at Canadore (Honeywe 11 Series 200, Model 115) has too small a core capacity to accept the CANB program, it was decided to load it on a computer at another community college. After extensive negotiations were completed, Humber College was chosen to have the CAM program installed - at no charge to Humber. This program would have the data inputted and stored and would output the reports that were required at that time from the more than 50 reports that are available. This program would be the source of all the special reports of great use to the students, staff and administration.

However, as Humber's computer was 200 miles ãway, as some tests (Block Mastery) needed to be scored and reports sent back overnight and as no computer terminal facilities wère available, it was thought advisable to have a means of scoring the students' tests with at most, overnight turn around. As a result and after discussion and analysis of alternatives, it was thought best to design a computer program that could be used at Canadore to score the tests. Correspondingly, a computer program was designed and was to be installed on the Honeywell machine at Car lore. This nrooram was desioned onlv to score the tests and output
information to enter into the analysis algorithms of CAM. At a later date, it is hoped to have direct terminal access to the full CAM program thereby eliminating the dual inputting required as of now. This will allow for much greater efficiency.

PREPARING COMPUTER INPUT

To prepare data to enter the CAM3 program there exists a series of manuals, including:

CAM3 User's Manual
CAM3 CANAL User's Manual
CAM3 SREP User's Manual
CAM3 PRCOD User's Manual
These manuals along with practice exercises give the basic information needed to prepare data for input. In addition, it is helpful to have someone experienced in this area, to be of assistance in this process.

CANADORE CAM REPORTS

The information given in Appendix D-11 gives a short summary of the types of reports available to a CAM3 user. A careful analysis of this gives the neonate some valuable tips on what type of analysis can be performed. The regular reports available on each run are the Individual Student Report, Test Form Analysis Report, Teacher Roster Tact ond from Summary Renort. The nther renorts are

ADMINISTERING CANADORE CAM: MATH MONITORING TESTS

Each student is to be given a test form, randomly chosen from the population of 10 available from the level in which he is taking instruction. He will never be given a test form which he has taken previously as it is almost impossible for him to remain in the same level for more than 10 test administrations. The tests are initially to be administered on a monthly basis approximately the third Tuesday in each month. After complete implementation of Canadore CAM: Math in all its aspects, more frequent administrations, probably bi-monthly, could be undertaken. All students are to be scheduled to take the test the same day. Those absent or who do not attend on the first day are to be requested to take the test the next day. Those who still do not attend will be asked to do so on a third day through their faculty advisor.
In this way, almost 100% of students will take the test in a given test administration.

STUDENT MANAGEMENT FOLDERS

If a student is required to study in a block, he needs to know three pieces of information:

1) the objectives in the block, along with their administrative numbers.
2) the nhiertives he needs to study in the block.

For any block, a list of generic objectives exists. However, these objectives were needlessly complex for students to have the gist of what the objective was about. Correspondlingly, every objective was simplified and usually shortened. This laborous process involved an original revision, a review, secondary revision, review and so on, until the alteration was acceptable. Next, a form was designed on which to type the objective. Each revised student objective in a block was typed onto the "Mathematic Task Index Sheet". The format and sample sheets are as shown in Appendix D-12. The triad of squares at the right - by each unit - reserves a place for the student to place the month, day and year he completed instruction on the unit. When a student is told which objective number he needs to study as determined on the basis of the pre-test in the block, he can tell with what the objective deals.

In companion with the task index were designed a series of Resources sheets - one each for Print Material, Films and Video-cassettes, Audio Tapes and Filmstrips.

For each unit of each block, a committee scoured the available resources to indicate in what book, tape, filmstrip etc. a student could find instruction on a given unit. This process consumed many weeks as a thorough search was made so as to generate as many resource references as nocihip for earh unit. As a result there finally existed

With these the student would have a valuable tool with which to guide his studies in a block. The format and sample sheets are shown in Appendix D-12.

IMPLEMENTATION OF CANADORE CAM: MATH BLOCK MASTERY SYSTEM

In the near future, the Canadore CAM: Math Block Mastery System will be initiated. At that time, students will cease studying under the old "LINC" System and be engaged. in the new Canadore System. The changeover will be a gradual one. Students will be given a thorough initiation into the nuts and bolts of the Canadore Math. As many questions as possible will be answered before the student commences the course.
The initiation will commence with level 2 and expand upward as the situation suggests. Level 1 will be ." introduced at the discretion of the instructor. All levels ought to be operational within six weeks of the initiation of the Block Mastery System.

APPENDIX "D-1"
CONTENT TOPICS BY CURRICULUM LEVELS MATRIX

	1	11	111	IV	V	VI	VII
	1-3	3-6	7-8	9	10	11	12
Whole Numbers				- -			
Fractions				- -			
Decimals	--	---					
Percent							
Measurement							
Sets	-						
Geometry							
Integers							
Ratio Prop							
Trig							
Algebra							
Indices							
Graphs Stats							
Slide Fiule							
Log5							
Series \&							
Prog							
Perm \& Comb						.	
Consumer Math	-	- - -				-	.
Metric System							

```
APPENDIX "D-2" CONTENT OUTLINE OF CANADORE CAM: MATH
```

01 WHOLE NUMBERS
01 Counting
01 number lines
02 cardinal relationship
03 counting by 2's, 3's, 7's, etc.
04 ordering of numbers
05 writing numbers
06 rounding off
07 place value
02 Even Numbers
01 definition
02 counting 2, 4, 6, etc.
03 Odd Numbers
01 definition
02 counting $1,3,5$, etc.
04 Addition
01 symbols
02 use of number lines
03 without carrying
04 with carrying
05 names of parts of addition question
06 additive identity
07 communitive property
08 associative property
09 distributive property
05 Subtraction
01 symbols
02 use of number lines
03 without borrowing
04 with borrowing
05 check by addition
06 names of parts
07 written problems
06 Multiplication
01 symbols
02 as repeated addition
03 multiplication tables
04 horizontal multiplication
05 multiplication using zero
06 multiolicative identity

01 WHOLE NUMBERS

06 Multip1ication

11 word problems
12 highest common factor
13 lowest common multiple
07 Division
01 symbols
02 subtractive method
03 tradition method
04 checking division
05 division without remainders
06 division with remainders
07 word problems
08 Order :of Operation
01 rules
02 application to problems

02 FRACTIONS

01 Introduction
01 parts of a whole
02 number line
03 equivalent fractions
04 lowest common denoninator
05 terminology
06 ordering sets (sequencing)
07 reducing
02 Addition
01 like denominator
02 one denominator common to other
03 denominator prime to each other
04 denominators containing common factors
05 combinations - proper, improper, mixed numbers
06 horizontal and vertical
07 communitative property
08 associative property
09 problems (word)

03 Subtraction

05 using combinations of proper, improper, mixed numbers 06 subtraction (horizontally, vertically)
07 without borrowing
08 with borrowing
09 word problems
04 Multiplication
01 symbols
02 use of word of
03 proper fraction by proper fraction
04 improper (mixed) by whole numbers
05 proper by improper (mixed)
06 improper (mixed) by improper (mixed)
07 multiplicative identity
08 communitative property
09 associative property
10 distributive property
11 word problems
05 Division
01 symbols
02 rule (reciprocal \mathcal{E} inversion)
03 division of whole number by proper fraction
04 proper by proper fraction
05 proper by whole number
06 mixed by proper
07 mixed by whole number
08 mixed by mixed
09 word problems (1/4 of _ is 3)
06 Order of Operations
01 introduction to order of operations
02 complex fractions
03 problems

03 DECIMALS.

01 Introduction
01 symbols
02 place value
03 number line order of decimals (comparing fractions)
04 reading decimals
05 writing decimals

03 DECIMALS

01 Introduction
09 repeating decimals
10 number of decimal places
11 significant digits
02 Addition
01 symbols
02 rule
03 vertical addition
04 horizont.al
05 without carrying
06 with carrying
07 word probiems
08 properties
03 Subtraction
01 symbols
02 rule
03 names and parts
04 vertical...
05 horizontal
06 with borrowing
07 without borrowing
08 fractions and decimals
09 word problems
04 Multiplication.
01 symbols
02 rules
03 multiplication by 10's \& multiples of 10 's
04 decimal and fractions
05 word problems
05 Division
01 symbols
02 rules (place holders)
03 division by multiples of $10^{\prime \prime} s$
04 termination of division
05 division with decimals and fractions
06 word problem

01 Reading, Writing and Equivalents
01 symbols
02 reading numbers in percent notation

04

PERCENT
01 Reading, Writing and Equivalents
03 identify as fraction with denominator of 100
04 change percents to decimals
05 change decimals to percent
06 change percent to common fractions
07 change common fraction to percent
08 equivalents - percent, decimal, fractions

02 Operations

01 calculate $\%$ of numbers - type 1-0\% of $b=$ \qquad
02 word problems
03 calculate percentage one number is to another - type 2 - a is

04 word problems
percent of it is known - type 3-0\% of = b

06 word problems
05 RATIO AND PROPORTION
01 Ratio
01 define
02 example
03 symbols
04 reduce to common fraction
05 ratio to decimals
06 word problems
02 Proportion
01 define
02 example
03 symbols
04 direct proportion
05 similar triangle
06 inverse proportion
07 pulleys
08 gears
09 word problem
06 CONSUMER MATHEMATICS
01 Pay Calculation - Income
01 per hour
02 per day
03 per week
04 per month
05 per annum

06 CONSUMER MATHEMATICS
01 Pay Calculation - Income
06 piece work
07 bonuses and tips
08 commission
09 fees
02 Taxes - Income
01 income deducted
02 U.I.C.
03 Canada Pension
04 income tax filing form
03 Budgets
01 housing costs - buying
02 housing costs - renting
03 utilities
04 groceries - per unit buying
05 home insurance
06 auto/transportation - .insurance
07 clothing
04 Banking
01 loans, borrowing
02 interest - simple, compound
03 amortizing mortgages
04 credit unions
05 finance companies
06 wills
07 bankruptcy
08 judgments
07 MEASUREMENT
01 Time
01 definition and equivalencies
02 symbols, abbreviations (second, minute, hour, day, month, year, centuries)
03 . convert 12 hour clock times to 24 hour clock. times 04 convert 24 hour clock times to 12 hour clock times 12 hour clock times and 24 hour clock times - days 05 add and subtract identical times and convert
06 add different times and convert
07 subtract different times and convert
08 time zones
09 word problems

07 MEASUREMENT

02 Distance
01 definitions as units
02 symbols, abbreviations (inches, feet, yards, miles)
03 conversion - feet to yards, etc.
04 add and subtract identical units of distance and convert
05 add different distances and convert
06 subtract different distances and convert
07 measure
03 Liquid
01 definitions
02 symbols and abbreviations (Imperial, Metric, U.S.)
03 conversions
04 add and subtract identical units
05 add different units
06 subtract different units
07 multiply different units
08 divide different units
09 word problems
04 Weights
01 definitions
02 symbols
03 conversions
04 add and subtract identical units
05 add.different units
06 subtract different units
07 multiply different units
08 divide different units
09 word problems
05 Thermometers
01 definition
02 conversion
03 operations
06 Volume
01 formulas (cubes, squares, spheres, etc.)

08 SETS

0101 Symbols
0201 Operations using Sets
0301 Venn Diagrams
0401 Infinite and Finite
0501 Word Problems
44

GEOMETRY
0101 Terminology
0201 Symbols
0301 Shapes
04 Bi-section
01 lines
02 angles
05 Instruments
01 lines
02 angles
06 Construction
01 line
02 angles.
03 figures
04 perpendiculars
05 parallel lines
07 Formulas
01 perimeter"*
02 area
03 circumference
04 volume
0801 Scale Drawing
09 Coordinate Geometry
01 four quadrants
02 graph with ordered pair
03 graph with a point
04 graphing equations with one unknown
05 graphing equations with two unknowns
06 graphs to solve simultaneous equations in two unknowns
INTEGERS
01 Introduction
01 definitions and symbols
02 number lines
03 ordering
04 inequalities
05 absolute value
02 Addition
01 horizontally and vertically

10

INTEGERS
03 Subtract
01 horizontally and vertically
04 Multiplication
01 horizontal and vertical
05 Division
01 horizontal and vertical
0601 Order of Operations
11 ALGEBRA
01 Introduction
01 terminology
02 definition of terms
02 Operations
01 addition using the number line
02 horizontal and vertical addition using the laws of addition
03 subtraction using the number line
04 horizontal and vertical subtraction using the laws of subtraction
05 horizontal and vertical multiplication of monomials, binonials and trinomials
06 application of BODMAS rule in use of brackets
03 Laws
01 commutative
02 associative
03 distributive
04 multiplicative identity
05 additive identity
04 Factoring
01 simplifying products into factors
02 formulas for factoring
05 Algebraic Fractions
01 addition
02 subtraction
03 覑ultiplication
04 division
05 solving equations in one unknown
06 graphing algebraic equations in one unknown

11 ALGEBRA

05 Algebraic Fractions
07 solving simultaneous equations in two unknowns 08 graphing algebraic equations in two unknowns

06 Solution of Word Problems

12 INDICES

01 Introduction
01 terminology (index, exponent, base coefficient)
02 definition of $X^{\text {nl }}$ which equals $X{ }^{-\cdots}$ X ... for m factors
02 Laws of Indices
01 law of multiplication $\quad x^{3} \cdot x^{4}=x^{7}$
02 law of division

$$
\frac{x^{12}}{x^{2}}=x^{10}
$$

03 law of powers

$$
\left(x^{3}\right)^{2}=x^{6}
$$

04 power of a product

$$
\left(x^{2} y\right)^{3}=x^{6} y^{3}
$$

05 power of a quotient

$$
\left[\frac{x^{3}}{y^{4}}\right]^{2} \cdot \frac{x^{6}}{y^{8}}
$$

06 meaning of a zero index
07 meaning of a negative index
08 meaning of a fractional index
09 operations using indices
03 Standard Numbers (Scientific Notation)
01 definition of standard or scientific notation
02 changing large numbers to standard numbers
03 changing standard numbers back to whole numbers
04 changing small numbers to standard numbers
05 changing small standard numbers back to (regular) whole numbers

13 GRAPHS \& STATISTICS

01 Terminology
01 mean (average)
02 mode
03 medium
02 Probabilities

13 GRAPHS \& STATISTICS
03 Types of Graphs
01 line
02 bar
03 circle
14 METRIC SYSTEM
03 Liquid Measure
06 addition of unlike units
07 subtraction of like units
08 subtraction of unlike units
09 multiplication of like and unlike units
10 division of like and unlike units
11 problems involving liquid measure

APPENDIX 'D-3"
 EXPLANATION OF GENERIC OBJECTIVES

In any individualized program it is necessary for some sort of objectives to be written so that students can ascertain what is the immediate goal of their study. In the Canadore Comprehensive Achievement Monitoring.- Mathematics (CAM-Math) System, we have decided to utilize a number of distinct but interrelated types of instructional objectives. Although, perhaps, initially more difficult to comprehend than the monotype approach, the eventual goal is to make the generation of the objectives a more understandable procedure.

The first type of objective that an instructor would write is called a generic objective, sometimes abbreviated as GO. This objective is a general one and is written in a standard format. The following is a possible GO:

the student writes the wholenber: Output String

This GO is expressed in the standard or common format. The input string always commences with "Given" and the output string always begins with "the student". In addition to the specific words common to all objectives, a particular GO can consist of between 3 and 5 elements (the numbers refer to the above example):
(1) Indicates the particular stimulus required; it consists of what information the student needs in order to do the task.
(2) Indicates mode of input or how this information is received by the student (e.g. orally, visually, from memory). In CAM-Math it is assumed that the mode is written and this element is given only if the mode is other than visual.
(3) Indicates the behavioral indicator or general operation. It is an action verb that
, tells what activity the student will perform (e.g. calculate, designate, write).
(4) Indicates the thing operated on or the component. It is what the student will calculate, designate, write and so on.
(5) Indicates any modifier that may be necessary to.further describe the output expected.

A Generic Objective does not contain any specific content but indicates a class of objectives all having identical procedures but differing in specifics. Another example of a generic objective would be:

Given two or more whole numbers to add, not requiring carrying, the student calculates the sum.

This is generic because it contains no specific content, the addends could be any number (two is the logical minimum) and each would consist of any number of digits.

This GO is placed at the lowest instructional (grade or difficulty). level appropriate and could appear in any number of succeeding levels as indicated by the specific content.

A specific Content Objective (CONOB) for a low level could map the numbers 6 and 3 to the preceeding GO to form the following content objective:

Given the numbers 6 and 3 to add,
the student calculates the sum as 9.

At a somewhat higher difficulty (grade or level) the numbers $1,463,132$ and $8,325,827$ could be mapped into the original GO to form a more difficult CONOB.

A Generic Objective mapped across all or several levels of difficulty or a set of interrelated generic objectives at a particular level of difficulty can be subsumed into a criterion objective (CO). A possible CO at a specific level might be:

Given 10 addition problems of whole numbers (not requiring carrying) with up to 8 addends and 6 digits, the student calculates the sum for 9 out of 10 problems.

At this stage enters the idea of achievement for a random sample of similar problems with an appropriate mastery standard. It is for the purpose of reaching this criterion with these particular problems that the generic objectives and the content that was mapped onto them were developed. It is these CO's that form the bases for grouping instruction into administrative divisions (e.g. Blocks, Units and Instructional Modules).

The Criterion Objective that includes all
appropriate content difficulties (across levels) for a set of generic objectives can also be termed a Terminal Objective (TO). It is this terminal behaviour (among others) that is expected from an individual who aspires to a particular stated goal. These TO's could vary if the goal is entry to a skilled trade or alternatively, to a university.

CONCLUSION

This paper has attempted to introduce some of the various types of instructional objectives designed into the CAM-Math. System. However, it is important to remember that this is merely an overview and does not represent an attempt to be an instruction manual for designing these objectives within a CAM System.

53

GENERIC OBJECTIVE

The "generic objective" (GO) is a standardized format for a behaviourally-oriented objective that is both specific and general. It is specific in that it describes the type of stimulus to be given, states how it will be presented and limits the student response to a particular behaviour. It is general in that it does not cite the specific stimulus material or content to be used.

For any objective in any course (including skill) if the objective can be expressed behaviourally, then it can be formulated as a generic objective.

EXHIBITS

Adequately expressed GO:
Given a whole number orally, the student writes it in numeral form.

Too Specific for a GO:
Given the number 113 orally, the student writes it in numeral form.

Too General for a GO:
Given a number orally, the student writes it in numeral form.

Given a whole number, the student writes it in numeral form.

Given a whole number orally, the student writes it.

1. - particular stimulus required
2. - mode of input

Input String
GIVEN A WHOLE AND DECIMAL NUMBER ORALLY,

3 5 .. 4.
THE STUDENT WRITES THE WHOLE NUMBER
Output String
3. - behavioural indicator; action verb
4. - indicates the thing operated upon; the activity performed
5. - modifier to further describe output expected

APPENDIX '"D-4"
 GENERIC OBJECTIVE CARD

The following is a diagramatic explanation of the elements of this card.

1	2	3	4

1 - Topic
1 - Curriculum Level (Grade)
2.-Sub Topic

3 - Sub Topic
4 - Objective Number

4 - Instructional
Module - Criterion Objective within Unit (Max. 9 Modules)

The bottom of the card can be interpreted thusly:
(1) Classification
(2) Levelling Phase
(3) Introduce
(7) Initiator
(4) Recycle
(8) Instructor
(5) Review
(9) Evaluator
(1) Classification Cell - two descriptors including topic and subtopic names.
(2) Levelling Phase indicates in what sequence the objective occurs for an individual learner.
(3) Introduce - this is the first time that a learner encounters this objective.
(4) Recycle - this is an objective that is being taught again but at a higher level than before.
(5) Review - this is an identical objective that a student learned before but which he is required to relearn.
(6) Approval format:

- can be used either before and/or after typing.
- people approviṇ̆g indicated as:
(7) person who originall: writes objective
(8) person checks content
(9) CAM Evaluator who gives final check on entire objective.

The numbers (1-7) listed virtically on the left. side of the card indicate the Curriculum Level(s) in which this objective appears. This could be only one level or could be as many as 3 or 4 levels if this is the desired.frequency.

APPENDIX "D-5"
 SELECTED SAMPLES OF GENERIC OBJECTIVES

Given two or more different units of time, the student converts them to identical units, calculates the difference and selects its other appropriate unit or units of time.

Lassification:
Measurement - Time

Levelling Phase:
Introduce $:$
Recycle Review

Approval:
Initiator
Instructor Evaluator

Given a word problem involving the division of decimal numbers, the student identifies that the operation of division is necessary for its solution.

The decimal numbers have no more than 2 digits to the right of the decimal point.

APPENDIX "D-6"
 NUMBER OF GENERIC OBJECTIVES
 IN CONTENT TOPICS
 BY CURRICULUM LEVELS MATRIX

APPENDIX "D-7"

ABBREVIATES ADMINISTRATIVE OUTLINE

 OF GENERIC OBJECTIVES1. WHOLE NUMBERS: INTRO.:

1 (5) cardinal; numerals; ordering; numberline; counting.
2 (1) place value
3 (4) even; counting (even nos.); odd; counting (odd nos.).
02 WHOLE NUMBERS: ADD:
1 (5) sum-no. line; symbol-add; symbol equals; no. equals total; use of + and equals.
2 (5) nos. equals "addends"; definition addend; sum; sum vs "total"; nos. sentence symbol equals.
(5) add-no carrying; add-carrying; adding from w. problems; w. problem-adding

03 WHOLE NUMBERS : SUBTRACT:
1 (2) sub.- no. line; sym.-sub.
2 (3) sub.-no borrowing; sub.-borrowing; check sub. by add.
3 (3) part-minuend; part-subtrahend; part-difference
04 WHOLE NUMBERS: MULTIPLY:
1 (3) sym.-mult.-arith. exp.; add. prob. as mult.; mult. as add.
2 (4) three two's are; num. $x 1$; num. $x 0$; product from mem.
3 (5) multiplier in exp.; $x \times y$ is _ ; prod. of x and y is __; $3 x$? $=18$; factor of terms
4 (3) exp.-mult. whole nos.; w. prob.-mult. whole nos.-exp. and. solves.

05 WHOLE NUMBERS: DIVIDE:
1 (3) sym. -"divide"-exp.; x into y goes ? times; x divided by y is;
2 (7) div.-repeated subt.; div.-trad. method; check division; div.-evenly; select terms-div.; 0 divide a;

3 () w. prob.-div.-exp.-obtain exp.-solves FRACTIONS:
1 (1) name of geom. figure
2 (7) 4 of 7 parts; fractions-no. line; part-numerator; partdenominator; select proper frac.; select improper fractions; select mixed nos.

3 (5) fractions: sum-no. line; sum-proper-common denominator; common denom.; LCD; one function of other denominator.
4 (3) fractions-dif.-common denom.; dif.-factor of denom.; borrowing not necessary.

07 CONSUMER MATH. :
1 (2) change-from bill; from fees to bill.
2 (6) hourly rate-wage; daily rate-pay; weekly rate-pay; monthly rate-pay; yearly rate-pay; piece work rate-pay.

LEVEL 2 OUTLINE

20 Whole Numbers
1 (4) numerals; place value; ordering nos.; round nos.
2 (4) associative prop. of add.; commutative prop. of add; additive identity; sum-carrying
3 (.3) w. prob.; adding-expression-solve
4 (4) subt.-no. line; subt.-no. borrowing; subt.borrowing; check subt.
5 (3) exp.-"minuend"; exp.-"subtrahend"; exp.-"difference"
6 (3) w. prob: subt.-expression-solve

21 Whole Numbers

1 (6) add. as mult. prob.; mult. as add prob.; three two's are?; prod. from mem.; "multiplier in exp." factor exp:
2 (5) exp. muli. by ten; product-horizontal; x times y is ? the prod. of x and y is ? $3 x$? $=18$.
3 (6) mult. by 1 ; mult. by 0 ; communitative prop.; associative; multiplicative identity; distributive.
4 (3) w. prob.: mult.-exp.-solve
5 (4) "prime no."; exp.-prime nos.; exp. HCF; exp.-LCM

22 Whole Numbers
1 (6) symbol \div exp.; quant. of x div. by y is ? div. rep. subt; div.-trad.; terms in div.-eg. check div.

2 (7) div. evenly; x into y goes ? times; x divided by Y is ? o divided by: a is ? a divided by o is ? div.-remainder; check div.
3 (3) w. prob.-div.-exp.-solve
4 (5) step no. of oper.; order of oper.; w. prob. order of oper.-exp. -solve

23 Fractions
1 (7) 4 of 7 parts; improper-mixed; mixed-improper; equivalent fractions; procedure-reduction; reduced frac. ordering
2 (7) common factors; prime common denom.; sum-horizontal;
sum-vertical; sum: prop. $\mathcal{\&}$ improper; sum-prop. $\mathbb{\AA}$ mixed.
3 (3) sum-denom. prime; sum-common factors; sum-comb. of fractions.
4 (2) commutative; associative
5 (3) w.prob. add fractions - exp. - solve
24. FRACTIONS:

1 (4) subt-vertical; subt.-horizontal; subt-denom. prime; subt-common factors-denom.
2 (5) subt-prop. \& mixes; subt-prop. \& improper; subt-improper ξ mixes; subt-borrowing; subt-combinations.
3 subt-w.prob. - exp. - solve

25 Fractions
1 (4) symbol "x"-exp., symbol "of"-exp.; product-proper product - prop. \& improper.
2 (5) product: improper; product: whole \mathcal{E} improper, product: whole $\&$ mixed; product: prop. $\&$ mixed. product: mixed.
3 (5) multiplication identify; commutative; associative, distributive - add; distributive - subtraction.
4 (3) w.prob. mult. of fractions - exp. ${ }^{7}$ - solve

26 Fractions

1 (5) symbol "\&" exp.; pzor.dure : ; quot. - prop. \& whole quot.- whole by pirser; quot. - proper.
2 (4) quot. - improper by whole; quot.-improper by proper; quot.-improper; $\frac{1}{x}$ of ? $=M$
3 (3) w. prob.: div. of fractions - exp. - solve.
4 (4) order of ops., w. prob. - order of ops. - solve

27 Decimals

1
(8) def'n. - decimal fract.; def'n.-decimal pt.; decimal aloud; decimal writes; decimal nos.; decimal
3.
in words; decimals on No. 1 re defn.-mixed decimal
2 (4) place value-dec.nos.digits; sig. disits, level of accuracy; place value - dec. fract.
3 (6) dec.-fract., mixed dec.-mixed no. mixed no.-dec., fract-dec. (accuracy) def'n. "repeating dec."; frac.rep.dec.
4 (9) sym. "+" exp., decimal pts.-vertical, add-no. carrying; add-carrying sum-vertical; sum-horizontal; sum-whole \& dec.; w.prob. - add dec. - exp.-solve.
5 (8) sym. "-"exp., names part-subt, subt. -no. borrowing; subt.-borrowing; subt.-horizontal, format; subt.-horizontal; w.prob.: subt. exp.-solve

28 Decimals
1 (8) sym. "x" exp.; mult. by 0 ; mult. by 10 ; decimal place; w.prob.-mult. of dec.-exp.-solve commutative; associative.
2 (8) sym. ": " exp.; div.-decimal pt.; no dec. pt.in divisor; div.-places moved; quot.-div. by 10; dividedecimal place; div.-no decimal;div.-remainder as decimal
3 (5) quot. - dec. $\&$ fract.; w. prob. - div. dec.; exp.solve;
quot. at accuracy;
4 (8) w. prob. - add dec.; w. prob.-subt. dec.;subt.-frac. ६ dec.; w. prob.-mult.; mult.-frac. \& dec.; w. prob.div.dec.; ans.-no. of dec. places; format for add $\mathcal{\&}$ subt.

29 Percent \& Ratio

1 (5) sym. "\%" exp.; \% num'words; frac.-\%; dec.-\&;告-dec.
2 (3) frac.-dec. $\mathcal{\&} \%$; dec. $-\%$ \& frac.; $\%$ - dec. \mathcal{E} frac.
3 (5) ratio - defn.; ratio of 2 nos.; ratio - eg.;
ratio-reduced; ratio-equivalent

30
 Consumer

1 (8) hourly rate-pay; daily rate-pay; weekly rate-pay;
4.
monthly-rate pay; yearly rate-pay; fees - total charges; rate of commission-amt.; piece work rate-pay.
2 (6) change; cost: one item-many; total price-one item; better buy, w. prob. -cost of food same $\mathcal{\&}$ diff.
3 (6) water meter; utility-costs; utility meter; w. prob.-procedure utility; - exp.- solve

31 Time Length Distance
1 (4) sym. - unit of time; time - relationships; 12-24 time; 24-12 time
2 (8) sum - id. time; subt. - id. time; sum-dif. time; sum-dif. units time subt.-dif. units of time - exp.solve
3 (6) length: symbol, convert units; calibre of instruments; measure metric; metric units
4 (6) Distance: sum-identical; sum-different; subt.dif. units-converted
5 (3) w. prob: meas. of distance-. exp.-solve.

32 Liquid Measure
1 (6) Liquid measure: symbol; convert units; sum-similar units; sum-convert,-sum-dif. units w \mathcal{E} w/o conversion
2 (4) Liquid meas.: subt.-similar units w. \& w/o conversion; subt.-dif. units - w \& w / o conversion
3 (2) Liquid meas.: mult.; div.
4 (3) Liq. meas.: w. prob.-exp.solve

33 Weight Measures:
1.(5) weight - def'n.; symbol; convert units; - dif. units

2 (3) sum - identical units, w $\&$ w/o conversion;
3 (3) subt. - identical units $w \in$ w/o conversion
4 (2) mult.; div.
5 (3) w. prob. weights - exp. - solve
6 (2) geo. shape; volume of shape
40. Whole Numbers:
$1(5)$ round off, additive identity, associative, commutative,•distributive.
2(2) mult-parts; factors
$3(3)$ w. prob. - mult - exp. - solve
4(4) "prime no." defn., eg. of prime nos. HCF, LCM
$5(3)$ quot. of $x:$ by y is ?, div. leaving remainder express remainder
6(3) w. prob.: div. - exp. - solve
7 (4) order of ops.; w. prob. - order of ops. - exp. - solve
41. Fractions:

1(4) no. line; reduction; prime denom, lowest common denom.
2(7) sum - common factors; sum - denom. - prime associative; sumcombination w. prob. - add - exp. - solve
$3(4)$ subt. - borrowing; w. prob. - subt. - exp. - solve
42. Fractions - Mult.:

1(5) multiplicative identity, commutative associative; distributive over add; distributive over subt.
2(3) w. prob. - mult. - exp. - solve
3 (4) $1 / 4$ of ? is 3 ; w. prob. - div. - exp. - solve
4(7) procedures - complex fract.; ans. - complex fract.; sequence of ops.; w. prob. - order of ops. - exp. - solve
43. Decimals:

I(8) reads no.; words represent; id. dec. no.; write decimal; on no. line place value; ordering; ans. - decimal places
$2(8)$ equiv.; frac. \rightarrow dec.; dec. \rightarrow fract.; mixed dec. \rightarrow mixed no.; repeating dec. \rightarrow fraction seg. digits; level of accuracy
$3(5)$ commutative; associative; w. prob. - add dec. - exp. - solve $4(3)$ align dec. points; w. prob. - subt. - exp. - solve
44. Decimals:

1(2) mult. by 10 - places moved $\&$ mult.
2(3) w. prob. - mult. - exp. - solve; mult. - frac. \& dec.
3 (6) no dec. in divisor; moving decimal places, div. by $10^{\prime} s$; div. - level of accuracy; div. - dec. E fraction
$4(4)$ w. prob. - div. - operation - exp. - solve
45. Fractions \& Decimals:

1 (4) Frac. $\rightarrow \%$; \% \rightarrow frac. denom. of 100 ; $\% \rightarrow$ fraction; mixed no. \% \rightarrow frac: 2 (2) dec. $\rightarrow \%$; $\%$ dec.
$3(3)$ frac. \rightarrow \% G dec.; dec. $\rightarrow \%$ §. frac.; \% \rightarrow dec. ξ frac.
46. Percents \& Ratios:

1(2) Type I: x of $y=a:$ calc. \& w. prob. - exp. - solve

$3(4)$ Type III: $x \%$ of $a=y:$ calc. $\mathcal{E} w$. prob. - exp. - solve
4(6) def'n. - ratio; ratio - eg.; ratio from 2 nos. lowest terms;
ratio dec.; $\%$ ratio
5(2) equivalent ratio; ratio a/b to proportion
47. Consumer: Pay \& Prices:

1(5) hourly rate - pay; daily rate - pay; weekly rate - pay;
monthly rate pay ; yearly rate - pay
2(3) fees - total change; price work rate : pay; commission rate amt. calc.
3(2) rental rate - year; \% income for rent;
$4(2)$ defn. - types of prices; sale price;
$5(5)$ food - for 1 ; one to many items; better buy; w. prob. - cost of food - exp. - solve
48. Consumer: Car, Utilities G Finance:

1(3) m.p.g. - distance; av. speed, odometer
$2(4)$ insurance terms; premium; car premium; better buy
$3(7)$ gas meter; electricity meter; utility meter; costs of utility w. prob. - utility procedure - solve
$4(6)$ "finance company" - term; "bank" vs. "fin. co."; "credit Union"; "int. \& principal"; "demand loan"; "collateral loan"
5(5) interest; w. prob. - interest - loans
49. Time \& Distance:

I(3) time zones; $1224 \mathrm{hrs}$. time; 24 to $12 \mathrm{hrs.time;}$
2(3) sum - time; sum - time - convert;
3(3) difference - time - w. \& w/o time
4(2) w. prob. - time - exp. - solve
5(2) calibre of instrument, measure
6(3) w. prob. - distance - exp. - solve

50. Liquids \& Weights:

l(3) liq. meas.: sum of similar \mathcal{E} dif. units
2(2) liq. meas.: diff. of similar $\&$ different units
3(2) liq. meas.: mult. \& div.
$4(3)$ liq. meas.: word prob. - solve - exp.
5(2) weights: convert
6(2) weights: sum \& diff.
7 (2) weights: mult. \& div.
8 (3) weights: w. prob. - solve - exp.

51. Thermometer $\&$ Geometry:

I(7) thermometer - defn. - points on scale; sym., sum of ident. \& dif. units; diff. 0 f ident. \S dif. units
$2(5)$ thermometer: mult. \& div.; w. prob.- solve - exp.
3 (3) name of geom. shape; formula; perimeter
4 (2) formula for area; compute area
$5(3)$ volume: formula $\&$ compute
52. Graphs \& Stats.:
$1(3)$ defn. - mean; cal. mean;
2(7) pictogram; - select \& procedures - constr.
reading - comparitive - question - interpretation
3(7) line graph: - select - procedures - const. - comparitive value of pt. - interpretation
4(7) bar graph: select - procedures - const. - comparative - value of pt. - interpretation
5(7) write graph: select - procedures - const. - comparitive - value of pt. - interpretation
$6(3)$ w. prob. - graph - solve - exp.
53. Metric - Length:

1(3) length: Brit. to metric; metric to Brit. metric to metric
2(4) length: sum $\&$ dif. of metric - similar \mathcal{G} unlike
$3(4)$ mult. \mathcal{E} div. of sim. \& dif. units
4(3) w.prob. - metric - solve - exp.
54. Metric - Weight:
l(4) units in metric; Brit. to metric, metric to Brit., conversion factor
2(4) sum \& dif. of similar \mathcal{E} different units
3(4) mult. \& div. of similar \& dif. units
4(3) w. prob. - metric wt. - solve - exp.
55. Metric - Liquid:

1(4) units of meas.; Brit. to metric, metric to Brit.; conversion factor
$2(4)$ sum $\&$ dif. of similar \mathcal{E} dif. units
$3(4)$ mult. \& div. of similar $\&$ dif. units
4 (3) w. prob. - iiquid meas. - metric - solve - exp.

LEVEL 4 OUTLINE

60. NHOLE NO. (1) \& PERCENTS:
l(1) whole nos. - series of ops.
2(1) Type I - $x \%$ of $y=a$
3(3) w. prob. - Type I \% solve - exp.
4 (1) Type II x is a \% of y
$5(3)$ w. prob. - Type II - exp. - solve
6(1) Type III, $x \%$ of $a=y$
$7(3)$ w. prob. - Type III - solve - exp.
61. RATIO \& CONSUMERS:
$1(8)$ Ratio: defn.; eg. forming; reduce; equivalent; to decimal; percent to ratio; ratio to proportion
2(5) Pay: hourly rate; eg. hourly, daily; weekly, monthly, yearly
3(3) fees to charges; piece work rate to pay; commission rate to total
62. CONSUMER \& TEMPERATURE:
l(4) defn. - principal; costs of home; rent $\&$ buy; depreciation of car
$2(6)$ simple \& compound int.; defn. - will; defn. discount loan w. prob. - loans - exp. - solve
$3(2)$ convert: temp. scale
$4(3)$ w. prob. - temp. - exp. - solve
63. SETS:
 $2(6)$ limits - identical sets; equivalent set; finite set; infinite set; null set; subset
$3(5) A \cup B ; A \cup B ;$ Venn diag. union-Venn; Venn-disjoint
$4(2)$ w. prob. sets - set notation - solve
64. GEOMETRY:

1(3) name of figure; as a figure; as a form
2 (3) name of instrument; defn. of terms; defn. of symbols
3 (2) congruent triangles; similar triangles
4 (3) construct line \& procedure $\&$ instruments
$5(3)$ construct angle $\&$ proced. $\&$ instruments
6(3) figure - construct - procedures - instruments
7 (3) parallel line - construct - procedures - instruments
$8(4)$ bisect line - procedure - bisect angle - procedure
$9(6)$ perpendicular pt. on and off line: instruments; procedure; construct
65. GEOMETRY:

1(4) perimeter: formula $\&$ compute circumference: formula $\&$ compute 2(4) area: formula \& compute; volume: formula \& compute
$3(3)$ w. prob.: geometry - procedure - solve
66. INTEGERS:
$1(3)$ pos. or neg., in words; in symbols
$2(4)$ no. line; opposite; absolute value; order
$3(2)$ inequality - operation: calc. \& missing element

67. INTEGERS:

l(4) sign of sum; sum; sum - vertically; sum - horizontally $2(3)$ w. prob. - adding integers - exp. - solve 3 (3) sign of diff.; diff - vertically; diff. - horizontally $4(3)$ w. -rob. - subt. of integers - exp. - solve
68. INTEGERS:
l(3) mult. - sign: opposite $\&$ liked sign; horizontal mult.
2(3) w. prob. - mult. of Integers - exp. - solve
$3(3)$ w. prob. - div. of integers - exp. - solve
4 (3) rules of ops.; simplified expression remove parentheses
69. ALGEBRA:
$1(4)$ symbols: constants $\&$ variables, algebraic exp.; defn. formula; binominals
$2(3)$ numeral coefficent; equivalent exp., into word exp.
3 (4) sum: vertical \& horizontal; dif. vertical \& horizontal
$4(1)$ calc. of one variable
70. ALGEBRA \& INDICES:

1(2) product: nominal - horizontal \& vertical
2(2) product: binominal - vertical \& horizontal
$3(3) \mathrm{pt}$. on no. line; sum on no. line; dif. on no. line
$4(2)$ w. prob. - one unknown - exp. - solve
$5(3)$ w. prob. - alg. expression - exp. - solve
6 (5) indices: base; index equiv. as mult., equiv. as index mult. - identical base
71. GRAPHS \& STATS.:

I(4) mode: defn.; calc. whole $\&$ decimal ncis.; 2 modes
$2(5)$ median: defn.; calc. nos. occurring ξ not; event total of nos.
3 (2) range: whole \& decimals
$4(5)$ defn. probability; calc. ratio outcome certain; no. possibility of outcome; odds

80. RATIO \& PROPORTION:

$1(4)$ rátio: defn.; symbols, $a: b$ to a / b :
2(4) ratio - eg. forming; reduced; equivalent
3 (2) as decimal; \% to ratio
$4(3)$ w. prob. ratio - exp. - solve
$5(4)$ proportion: defn.; eg. symbols
6(5) direct prop.; inverse prop.; similar triangles
7 (4) pulleys - formula; calc.
$8(3)$ w. prob. - proportion - exp. - solve
81. CONSUMER MATH. \& SETS (1):

I(4) Fed. Tax: heading; Income, Net Income, Personal Exemption 2 (4) CPP, UIC
3(5) Taxable Income; amt. of tax dec., total tax due; total owing
4(4) defn. \& eg. judgement; bankruptcy, amortizing mortgage: w. prob.
5 (3) total interest; prin. \& int.; w. prob. - interest
6(1) w. prob. - sets
82. GEOMETRY:

1(2) scale drawing - proced. \& construct.
2 (2) pythagoreanth: proced. \& compute
$3(2)$ perimeter: formula $\&$ calc.
4(2) area - formula ξ calc.
$5(4)$ volume: formula $\&$ calc.
83. GEOMETRY:
$1(2) 4$ quadrants;
2(4) ordered pair or graph; location line on graph : I unknown \& 2 unknowns
$3(2)$ graph: 2 simultaneous eqns.
$4(3)$ w. prob.: geom. sol. - exp. - solve
84. INTEGERS:

1(4) absolute value; order; inequality $\&$ operate
2(3) sum: integers; horizontal \& vertical
$3(3)^{-w}$. prob. - adding integers - exp. - solve
$4(2)$ diff. - Sorizon. § vert.
$5(3)$ w. prob. - subt. integers - exp. - solve
85. INTEGERS \& ALGEBRA:
$1(3)$ Integers mult. - sign - horizontal
$2(3)$ w. prob. - mult. of Integers - exp. - solve
$3(3)$ w. prob. - div. of integers - exp. - solve
$4(3)$ rules: order of ops.; remove paren.;
$5(2)$ Algebra: symbol formula; inequalities
6(3) equiv. expression; mult. inverse
7 (3) commutative law; associative distributive
86. ALGEBRA:

1(3) LCD: algebra fractions
2(2) sum of alg. exp.
$3(2)$ dif. of alg. exp.
4 (3) prod. of alg. exp. - quot. of alg. exp.
$5(2)$ value - variable(one) - value - 2 variables
6(2) graph line - 1 variable - graph line - 2 variables
87. ALGEBRA:
$1(2)$ simplify exp.(mult.)
rule: common factors
2(1) factoring perfect sq.
$3(3)$ factoring dif. of sq.: rule \& calc.
4(2) factor incomplete sq: - rule
5(2) factor trinomial: rule $\xi \mathrm{eg}$,
6(3) common factoring: rule \& eg.
88. ALGEBRA \& INDICE:

1(2) Algebra: prod. trinomials $\&$ horizontal
$2(5)$ w. prob. - 2 unknowns - solve - exp. - seq. of steps - w. prob. alg. exp. - exp. - solve
$3(4)$ Indices - base; exponent as mult. prob.; as index
4 (4) mult. 2 index nos.: procedures \& calc. - div. 2 index nos.: procedures \& calc.

APPENDIX "D-8"
TEST ITEM CARD

APPENDIX "D-9" SPACING GUIDE

FOR TYPING ITEMS ON CARDS

— The sum of 2 and 4 is

APPENDIX "D-10"
SELECTED SAMPLES OF TEST ITEMS
awn chairs were on sale. Five chairs were $\$ 43.52$, but the Smith family needed only one chair. How much would it cost them?

1) $\$ 8.70$
2) $\$ 7.60$
3) $\$ 4.38$
4) $\$ 8.73$
5) Not given

ANS	UNIT	LESSON	OBJECT.	OBJECTIVE/ITEM	\% Ma	SUPFLEM.
1	1	1		$2,28,41^{6} 01^{1}$		11

The difference in time between 3 weeks and 18 days is:

1) 72 hours
2.) 36 hours
2) 42 hours
3) 144 hours
4) not given

If you paid the cleaner $\$ 9.53$ for 4 pairs of pants. What operation would you perform to discover the cost of cleaning for 1 pair of pants?

1) Divide $\$ 9.53$ by 4
2) Divide 4 by $\$ 9.53$
3) Subtract 4 from $\$ 9.53$
4) Multiply $\$ 9.53 \times 4$
5) Not given

1


```
If Darn ·ajd $5.95 for gas per week and'his car runs on 89$
per m; . How many miles can he drive per week? Identify
the op. :-ion necessary here.
    I. subtract 89& from $5.95
    \therefore. \nuivide $5.95 by 89&
    3) Divide 89& by $5.95
    4) Nultiply $5.95 x 89%
    5) Not given
```


Tony bought new lawn equipment. Total cost.was $\$ 101.22$. If he bought ten items, what operation would you use to determine how much he spent on each item?

1) Multiply $\$ 101.22$ by 10
2) 10 should be divided by $\$ 101.22$
3) $\$ 101.22$ should by divided by 10
4) Subtract 10 from $\$ 101.22$
5) Not given

Farmer Jones sold 595 eggs at market for $\$ 33.55$. How much is one egg worth to the farmer. What operation would you use to solve this problem?

1) Divide 595 by $\$ 33.55$
2) Multiply 595 by $\$ 33.55$
3) Subtract 595 from $\$ 33.55$
4) Divide $\$ 33.55$ by 595
5) Not oiven

Mr. Ames drinks 12.2 bottles of whiskey per month. If his total bill per month is $\$ 131.58$, what operation would give us the cost of 1 bottle?

1) Divide 12.2 by $\$ 131.58$
2) Subtract $\$ 131.58$ from 12.2
3) Add $\$ 131.5 \mathrm{~s}+12.2$
4) Multiply $\$ 131.58 \times 12.2$
5) None of these

> APPENDIX "D-1I"
> SAMPIE CANADORE CAM REPORTS

U:EEF	cejective	ANSHEP	SCOEF	M2			¢ovs	(F)
1	$27 \geq 1$	3	50	\%	1	2	3	4
2	2314	5	25	6	25	25	50	0
3	$29 ? 3$	1	18	6	0	37	25	6
4	20.3	4	18	6	13	6	31	0
5	2831	1	12	25	0	0	6	18
6	$25 ? 5$	5	37	25	12.	-. 6	6	0
7	2153	2	57	-2	6	37	0	6
8	2842	3	86	6	0	56	12	12
9	2013	3	87	C	0	6	37	0
10	3024	5	25	0	6	. 25	. 25	$\therefore 12$
11	2242	2	75	0	12	31	6	0
12.	3212	3	\% 15	6	\bigcirc	75	-12	0
13	235 ?	2	18	6	0	18	18	12
14	2644	$\stackrel{2}{5}$	62	12	0	62	18	0
15	2615	5	56	12	18	6	0	6
16	3252	2	0	5	12	12	18	0
17	2754	3	18	25	0	12	25	5
18	2921		43	12	6	0	43	6
19	2024	3	43	25	43	6	18	0
20	23\%5	5	81 37	5	0	0	81	6
21	3129	4	75	18	12	6	19	0
$2 ?$	2221	1	50	10	12	0	6	75
23	3016	4	+	12	50	6	6	6
$2 \cdot$	24,	3	+3	6	0	18	0	43
5	2130	1	12	$1 ?$	$4 ?$	6	18	0
6	2332	2	12	25	12	6	0	37
			12	25	0	12	13	0

97

Clッ TOTAL 29/ シ1 11/ 21

[^0]TEST ALN. 2 - 3/12/74
FRACTIOM COPRECT OV ALL ITE:AS IS L/O'S
Fisen 9 ? FRACTICN CORFECT CV YES ITENC IS $2 / 23$

6N	CBJ	RP	INS	6x-	B8d	R	ISS	$\begin{gathered} \text { TEST } \\ \triangle D Y \end{gathered}$	FORM	$\begin{gathered} \text { FRN: CCR } \\ \text { A1. } \end{gathered}$	$\begin{gathered} \text { FRNCUR } \\ Y E S \end{gathered}$
9	2013	4-	YES	14	26.44	2-	Y<s	1	$\bigcirc 31$	$5 / 75$	010
19	2024	+	YES	1	2721	1-	$Y=5$	2	921	$4 / 24$	$3 / 23$
4	2063		YES	17	2754	5-	YES				
25	2136	5-		5	2231	5-	YES		.		
7	2153	+		8	2942		YEs				
22	2221	4--	YES	20	$28<5$	$+$	YES.				
11	2.242	$3-$		18	2921	3-	YES			\sim	
2	2314		YES	3	2923	3-					
26	2332		YES	23	3016	2-				.	\checkmark
13	2353		YES	10	3024	?-	YES				
24	2424		YES	21	$312 e^{\text {* }}$	1-	YFs				
6	2525			12	3212	2-Y	YES				
15	2615	1-	YES	16	3352	$5-$	YES ${ }^{\circ}$				

GUA TOT:IL $\quad 7 / 51 \quad 3 / 23$

ER[CEAIJ ANTONIA 7KOL10 SECTN 1 TOWLTMEN R 03157
TEST AD:1 2-3/12/74
FRACTICN CMRPECT D: ALL ITE!S IS $14 / 35$
FIn: 031 FRACTICA C!P?RECT CN YES ITEMS IS 12/Z1

CN	035	RP INS	G.N	CEJ	RP	Ins	$\begin{array}{r} \text { TFST } \\ \text { AD:A } \end{array}$	FПลM	$\begin{gathered} \text { FPN CIPP } \\ A L L \end{gathered}$	$\begin{gathered} \text { FRA CCR } \\ \text { YES } \end{gathered}$
6	2014	3-YES	23	2723	$+$	YES	1	$9: 1$	161?	010
18	2043	+ YES	7	2744	+	YFS	2	931	14/25	12/?1
10	2122	+ YES	11	2835	$4-$	YES				
2	2143	+ Y YES	3	2943		$Y \mathrm{SC}$				
14	2154	+.	1.	2346	+	YES				
22	22\%6	+ YES	25	2022	+	YES				
4	2245	+	9	2935	$+$	Y¢S				
12	2317	2-YES	17	3017	+	YES				
20	2333	+ YES	13	3035						
8	2414	5- YES	24	3135		YES				
16	2513	5- YES	21	3153		YES			.	$\cdots \cdot$
19	2535		15	3223		Yes				
5	2633	+ YES	26	0						

CUA TOTAL $24 / 51$:2/ 2!

CAMANQPE PATH MONITORING $1-3 \quad 31713 \quad 031574$

31718

CANADORE MATH MINNITIRING $1-3$
31714
031574

PRELIMINARY AMALYSIS OF LEVIL 2 RASHO IN TM'G TEST AOMIMISTRATIDNS
1TEY

$29 \quad 2921$
292101
$29 \quad 292 ?$
$29203 \quad 302032$
29 29:3
$29 \quad 2535$
$30 \quad 301 t$
$30160 \div$
$3010 \quad 921$
$30 \quad 3017$
301703 ? 310 931
303024
$30-3035$
$3 i \quad 312$ a

313135

313153
$315 \equiv 020350$ 03!

108

CANADRRE MATH AONITIDRI:G 1.3
31713
03157%
PRELIAI:甘ARY AKMLYSIS OF LEVEL 2 BASED ON TWG: TFST AYAITISTRATIONAS

 CAMADRRE NATH MONITGRINC 1-3. 3L7]? 031574 PRELIMINGRY AMALYSIS MF LEVEL 2 BASEO OA TBU TEST AOMTMISTRATIBMS 21

APPENDIX "D-12"

STUDENT MANAGEMENT FOLDERS AND EXAMPLES

114

Canatore College

CAM 3

Mathematics Task and Resource Index
muse \qquad
vel \qquad
2
3ck
\qquad
20
Whole Numbers
Task Completed Mo. Da. Yr.

2. Select the arithmetic expression that is sufficient to solve the problem of adding no more than four whole numbers (sum >100).
3. Solve word problems involving adding of no more than four whole numbers (sum >100).

Unit 4 1. Find the difference between two whole numbers on the number line.
2. Find the difference between whole numbers that do not require borroving in subtraction.

Canadore College

CAM 3

Mathematics Task and Resource Index

Dourse \qquad
evel 2
\qquad
block
20
Whole Numbers

Task Completed Mo. Da. Yr.

2. Select the expression necessary to find the difference between no more than four whole numbers given in a word problem.
3. Identify the difference between no more than four whole numbers given in a word problem.

PRINT MATERIAL	UNIT			
	1	2	3	4
Arithmetic Readiness				
Lennes Essentials of Arithmetic			1)21,23	5) 11
Check and Double Check	5.) 1, 14-17	A)21,23	4)22,5,42	4)23,54,55
Interm. Math Program	tape 2			tape 7
Adult Basic Ed. Arithmetic	3) 30,31	3) 10.11	3)11,12	
Basic Arithmetic	1-9	11,12,15		21-25
8asic Niathematics	1-15	31-44	15	81,82,84,
Fractions 1			31-45	
General Mathematics		26		
Learning to Compute		1) $2,3,6$	(1)6,2)4,5	7123,2)19,
Math: A Basic Course	2,3,5-7		18,9	10,11
Refresher Mathematics		5,6,8,26,	126,27,32-	35,37-40
Understanding Metric System				
Intro. to Miodern Mathematics) 31-49		
Arithmetic of the Whole Number				
Whole Number and Numerals (Supp.)				
Introduction to Math	1) $3-47$	1) 42-67		
Inter. Technical Math				
Practical Math				
Gage Math-				
Basic Math	1) 1-26	1) 27-93		
Preparing for Algebra _ _				
\cdots -				
\square				
3			…	

FILMS AND VIDEO CASSETTES

esource Index

FILMS AND VIDEO CASSETTES

Source Index

:

ource Index

FILMSTRIPS	UNIT			
	5	6	7	8
Distance and Betweers				
Meanina and Readirg of Decimals				
Addition and Subtraction of Desimals				
Multiplication of Decimals				
Division of Decimals				
Changing Fractions to Decimals				
Advancing in Linear Mleasurements				
Advancing in Quantity Measurements				
Names of Numbers				
Adding with Fractions				
Number and Numerical				
Place Value and Subiraction -..				
Multiplication with Fractions				
Division by Fractional Numbers				
Operstion with Fractions				
Our Decimal Number System				
Operotions with Decimals				
Percents				
Metric System				
Areas of Triangular Regions		-		
Where Fractions Come from				
Naming Fractions				
Multiplication of Fractions				
Equivalent Fractions				
Where Fractions Come From				
Naming Fractions				
Multiplication of Fractions				
Equivalent Fractions				
\cdots				

[^0]: \cdots

